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van der Waals loops and the melting transition in two dimensions
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Evidence for the existence of van der Waals loops in pregswersus volume plots has for some time
supported the belief that melting in two dimensia@2®) is a first-order phase transition. We report rather
accurate equilibriunp(v) curves for systems of hard disks obtained from long Monte Carlo simulations. These
curves, obtained in the constant volume ensemble, using periodic boundary conditions, exhibit well-defined
van der Waals loops. We illustrate their existence for finite systems that are known to undmngnaous
transition in the thermodynamic limit. To this end, we obtain magnetizati@ersus applied field curves from
Monte Carlo simulations of the two-dimensional Ising model, in the constarisemble, at the critical point.
Whether van der Waals loops for disk systems behave i thec limit as they do for the two-dimensional
Ising model at the critical point cannot be ruled out. Thus, the often made claim that melting in 2D is a
first-order phase transition, based on the evidence that van der Waals loops exist, is not sound.
[S1063-651X%99)01603-7

PACS numbd(s): 64.60.Cn, 05.70.Fh, 64.70.Dv

Unphysical looking “loops” in pressure versus volume constant volume. In order to obtap(v) one makes use of
curves have been coming out of approximate calculations foexpressions that are derived from the virial theorfi],
nearly a century1]. These so-called van der Waals loopswhich in turn follows from the relation
have also been showing up in computer simulations of melt-
ing for over three decadeR2-7]. As Mayer and Wood af(v,T)
pointed out[8], pressures that increase with volume, which p(v)=— o @
would be ruled out by van Hove’s theorem fmacroscopic
systemg9], are indeed to be expected when simulating melt

ing of finite systems. van der Waals loops that decrease er particle. We have performed long Monte Carlo simula-

system sizes increase have been observed in simulatio 3ns (1.2< 10° MC sweeps in each run, of which the first

[5,7]. Their existence has almost invariably been taken ag) 3y 108 - . .
: . . . sweeps are allowed for equilibratipim the canoni-
evidence of a first-order phase transit/@-4.§ (though not cal ensemble I¥0r systems of 256qand 1012)4 hard disks. The

Delc! that the solc-flid phase transion in o cimensions!€SUS ODtaNed are shown in Fig.(45 O and 1 for N
P =256 and 1024, respectively

(2D) is first-order[ 10, 11]. Throughout the rest of this paper, “volumey actually

The purpose of this paper is threefold) to give ex- . . R
. stands for thearea of a two-dimensional system; it is given
amples of van der Waals loops that do sometimes show u .
n terms of the closest packing areg, and has, therefore,

for finite systems that undergmntinuousphase transitions no units. The pressune is actually a force per unit lenath
in the thermodynamic limit(2) to point out that since their hich AL e KT/ yd has th P ¢ gin,
size (defined below is exactly equal to the free energy bar- w 'Ch we give mlterms_o Vo an bas_t e;]re ore nofunlts_.
rier for nucleation of the other phase, it follows that van der There s an alternative way to obtain the same function
Waals loops are to be taken as signdiist-order transitions, P(‘_J) that illustrates h.OW van der Wafa_ls loops come about for
only if their size vanishes in the thermodynamic limit as theflnlte systems. Consider the probablhty.densmy(u) that a
inverse of the linear system size); (3) to report accurate system at a given pressupehave speqﬁc V.O|um®'P.P(U)
data for van der Waals loops that we have obtained for twoS2" be obtained from Monte Carlo simulations carried out at
given pressur@, in the NpT ensemble. Data foP,(v)

dimensional systems of 256 and 1024 classical hard disks, i . .
the fixed volume ensemble, and to show that their size de—hat have. been ob_tamédlB] fora system.of 2.56 hard disks
the solid and fluid phases are shown in Figa)2Data for

pendence is in very good agreement with more extensiv hibiti ist t both oh h .
data that follow from simulations in the constant pressur P(v) exnibiting coexistence ot both phases are shown in
ensemble(also known as theNpT ensemblg [12,13 that ig. 2(b) [13]. The p(v) curve that ensues in theanonical
seem to point to a second-order transition, rather than to gnsemble(that Is, —df/ov), can be obtained fronP,(v),
first-order one. sinceP,(v) andf(v) are related by

The pressur@(v) exerted by a system with a given fixed
volume per particle is usually obtained from Monte Carlo
(MC) or from molecular dynamics simulations carried out at

‘whereT is the temperature arfds the Helmholtz free energy

f(v)
——+pv

kT ' @

Pp(v)ocexp[—N
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FIG. 1. Pressur@ vs volumev data points from MC simula-
tions systems oN disks. The “volume”v stands for arareq it is
given in terms of the closest packing ameg The pressurg is a
force per unit length, given in terms &if/vy. Neitherv norp have
therefore any unitsO and [ stand for results from simulations in
the constant volume ensemble =256 andN=1024, respec-
tively. For details about the error bars shown, see the Appe@ix.
and @ stand for the average of the valug&), extracted from six
independent simulations performed at different valuep nfaking
use of Egs.(1) and (2). For N=256 we have used the pressure
valuesp=7.55, 7.60, 7.62, 7.65, 7.67, 7.69, and for-1024 the
valuesp=7.84, 7.85, 7.86, 7.865, 7.87, 7.88. Errors @rand @l
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FIG. 3. Data points fop vs volume for systems oN=256
disks. ¢ stand for data points({),p) obtained from simulations
using theNpT ensemble. The units far and p are given in the
caption for Fig. 1@ are for averages over pressure valpesr.55,
7.60, 7.62, 7.65, 7.67, 7.69 of the numerically obtained derivative
—df(v)/dv, usingf(v) obtained from the frequency of occurrence
P,(v) for each one of the six values @f Error bars are smaller
than the shown symbold] are for points pg,v) fulfilling the
relation d[f(v)/kT+pev]/dv=0 where f(v)/kT+pov follows
from In[Py(v)] for p=p,. For example, fop=7.64(marked with a
dashed line in the figujewe find three different solutions
(va,ve,vp) [marked with arrows as in Fig.(B)].

are approximately equal to the size of the shown symbols. All data

points follow from runs of approximately $0MC sweeps, after
equilibrating the system for:810° MC sweeps.

wherek is Boltzmann’s constant. Each data point§) ex-
hibited in Fig. 3 as &1, has been obtained this way from an
independent MC run at pressupein the NpT ensemble.
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FIG. 2. (a) Frequency of occurrende,(v) for specific volume
v for a system ofN=256 for p=7.83 (solid line) and for p
=7.40(dashed ling The units forv andp are given in the caption
for Fig. 1. (b) Same as fofa) but for p=7.64. These curves follow
from runs of over X10° MC sweeps. Lines shown go through
datapoints obtained, one for eadhy =102 bin. Volume values
whered[ f(v)/kT+pv]/dv=0 are marked with arrows.

Note that any two volumes, such ag andvy, in Fig. 3, that
fulfill p(v,)=p(vy) are most probable volumésee Fig. 2
whenp, instead ofv, is fixed. On the other hand,, which
is the portion of the loop wherédp/dv>0 and satisfies
p(ve)=p(va)=p(vy), is the least probable volume.

Alternatively, f(v) may, of course, be extracted frofat
least in principle P(v) obtained from a single simulation at
an arbitrary constam, using Eq.(2). We have obtained the
set of data points shown in Figs. 1 and 3 fb= 256 as® as
follows: Py(v) is obtained at the discrete volume
values v,=1.24+nAv, where Av=0.0025, and n
=0,1,2...,40.P,(v,) follows from recorded histograms of
the number of timesv falls within v,—Av/2 and v,
+Av/2 in a given MC run, at a given value pf We have
obtainedP,(v,) for six values ofp from six independent
MC runs in theNpT ensemble. Making use of EqR) and
the finite difference version of Eq1), six p(v,) curves fol-
low. Data points for their average values at each valug,of
are exhibited a® in Figs. 1 and 3. Corresponding standard
deviations give error bars of approximately the same size as
the shown symbols. The same procedure has been used to
obtain the data points exhibited in Fig. 1 fd=1024 asll.

The good agreement between independent sets of the data
points in Figs. 1 and 3 gives an indication of the accuracy of
our equilibrium results.

For comparison, we also plot in Fig.[Bversus the mean
volume(v) that is obtained in th&lpT ensemble for a sys-
tem of 256 disks(shown as<{). No van der Waals loops
obtain. This is because, in tHépT ensembled(v)/dp=
—N{(v—{v))?), which is clearly negative.

We next give an example that underscores the fact that
while van der Waals loops follow for finite systems from
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FIG. 4. Magnetic fieldh vs magnetizationm for the two-
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f(m+2/N)—f(m)=(2/N){of[m+(1/N)/dm]}
gives
h[m+(1/N)]=(N/2)[f(m+2/N)—f(m)].
We thus arrive at
h(m)=—k—TIn w(m+ 1/N«<—m—1/N) @

2 |w(m—=1/N<—m+1/N)|’

after shiftingm—m—21 for symmetry’s sake. In order to
obtain the transition rates, we proceed as follows. First note
that the probability for an up-spin flip from a given spin
configuration is proportional to either 1 or expfE/KT), de-
pending on whether the corresponding energy chaviges
either negative or positive, respectively. Accordingly, after
each MC sweep, having applied Kawasaki’s rule throughout
the entire system, we assign to each spin down either the

dimensional Ising systems &f< L spins at the critical temperature, number 1 or the number exp(AE/KT), if flipping it up
for L=8, 16, and 32. Continuous lines stand for data that foIIowswou|d lower its energy or raise it b§E, respectively(No

from probability P,(m) curves, obtained from simulations in the
constanth ensemble foh=0. The umbrella method was used to

obtainPy(m), covering the whole range of 1<=m=<1 values with

16 “umbrellas.” Each one of the three continuous lines shown
follows from 16 MC runs of 1® sweeps over the entire system for

N=12 and 5<10° sweeps forL,=8.M,0, and ¢ stand forL

spin is actually flipped.The sum of such numbefd and
exp(—AE/KT)] over all down spins in the system averaged
over an MC run is our unnormalized estimate wi{m
+ 1/N<—m—1/N).

Alternatively, the same curves fti(m) may be obtained

=8, 16, and 32, respectively, obtained in the conserved magnetizd!@M Simulations in whicth is fixed, by applying the relation

tion m ensembléwith the Kawasaki algorithin Every point shown
follows from a MC run of 5< 10° sweeps fot. =8, and 16 sweeps
for N=12.

first-order phase transitions, the conversands true. Con-
sider the Ising model in 2D. The applied fididsersus mag-

h=gf(m)/dm to probability curvesd,(m) that follow from
such simulations. Results obtained in this fashion, from both
the constanim and the constarit ensembles, are exhibited in
Fig. 4.

We have also obtainet(m) curves(not shown for T
<T, for the two-dimensional Ising model. However, loop

netizationm is shown in Fig. 4 for Ising systems of 64 256 sizes forT<T. and for T=T, vary rather differently with
and 1024 spins, for periodic boundary conditions, at the critisystem size. By loop size, we mean the free-enesgy
cal temperaturéT=T,. These curves are unusual because=Jh(m)dm over the domain of integration defined Iy

we obtained them from MC simulations in an constamt

<0 andh>0. Data points folLAg/kT are shown in Fig. 5

ensemble, rather than in the more often used ensemble for T/T.=0.9, 0.95, and 1. Data points for the Gibbs free-

which h is fixed. In our simulations, we keem constant
using the Kawasaki algorithirl5]. In it, one spin is flipped

up while another spin is flipped down at each MC step. The
canonical andNpT ensembles, discussed above, correspond

to the constani and constanh ensembles, respectively.

We arrive at theh(m) values for the constant magnetiza-
tion ensemble given in Fig. 4 as follows. Consider first a

simulation performed at constart, in which spins are
flipped, and the total magnetizatiavi (given by Nm) is
consequently not conserved. vefm+ 2/N<—m) be the con-
ditional probability that a system known to have Mrvalue
make the transitiotM + 2+ M when no external field is ap-
plied. SinceP,(m)c«<exd —Nf(m)/kT] for h=0, we can write
the detailed balance condition,

W(m+2/Nem) e Nf(m+2N)/KT
w(m—m+2/N) e NMKT

©)

Let the Hamiltoniar becomeH—hM when fieldh is ap-

plied. Now,h plays no role in a calculation in the constduht
ensemble, but ah(m) can be obtained for the given valoe
from the relationh=¢f(m)/dm. Taking logarithms of both
sides of the above equation givEgn+ 2/N) — f(m) in terms

of the transition rates. The approximation

energy

AgikT= [ “Tp(wa) - plo)Tdo )

(the shaded area in Fig) are also shown in Fig. 5 for disk
systems of various sizes. In order to makg unique, we
choosev , such thatp(v,) is the Maxwell construction pres-

surep, [17], that is,fzb[p(v) —pm]dv=0. From data points

shown in Figs. 1 and 3, we obtain, making use of &, the
two data points shown in Fig. 5 @ for systems ofL X L
spins forL=16 andL =32. Data from previous simulations
in the NpT ensemble are also showasO) for L=16, 20,
24, and 3413]. The error bars shown in Fig. 5 follow from
the procedure described in the Appendix.

As Lee and Kosterlitz have explained in some ddtid],
the macroscopic limilLAg (a measure of the surface ten-
sion) does not vanish for first-order phase transitions. This
follows from the following simple argument. As may be seen
from Eq. (5) and comparison of Figs. 2 and BYAg (the
system’s dimensionl is 2 in this casgis the free-energy
barrier that is surmounted by the system when a fluctuation
takes it over the top, at., starting from the(locally) most
probable volumey,. We may, therefore, think df%Ag as
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FIG. 5. Data points fot Ag/kT for a system oL XL disks.® FIG. 6. QuantityN[f(v)/kT+pv] vSv, up to a constant, ob-

andO stand for data obtained from systemslot L hard disks in  tained from MC simulations of systems of 1024 disks for each of
the constant volume ardpT ensembles, respectively, [J, and  the values ofp shown; p,,=7.865. Each one of the six curves

+ stand for the 2D Ising model at temperatu®§,=0.9, 0.95,  shown follows from a MC run of at least210° MC sweeps over
and 1, respectively. Lines are only guides to the eye. Error bars fothe whole system. Ideally, all curves should be equal. We define the
data points shown & are approximately given by the size of the free-energy barrier AG as the local maxima ofN[f(v)/kT
circles, except that the error is=(0.0006) approximately four times 4+ p.v] minus the average value of its two minimum values. All
smaller forL=32. For a detailed account about how these errors, agalues ofAG/kT thus obtained are shown in the figure. We obtain
well as the error bars shown for ti@ data points, were obtained, the average valuAG/kT=0.62. The corresponding standard de-
see the Appendix. viation is 0.02.

the free energy of the wall that arises between two coexisting 4 ample computer time from CECALCULA, at the Uni-
phases when one of them is nucleated from the other one \rsidad de Los Andes.

order to make a transition from one phase to the other one.
Since the wall thickness is finite for first-order transitions, it
follows then thatL9Ag~L9" 2, which is the desired result.

Inspection of Fig. 5 shows that the vanishinglaig in We specify here how we obtain the error bars shown in
the L—cc limit, as for the two-dimensional Ising model at Figs. 1 and 5. The error bars shown in Fig. 1 for data that
the critical point, can clearlyot be ruled out for disk sys- follows from MC runs in the canonical ensemble are ob-
tems. Thus, the often made claim that melting in 2D is atained as follows. We divide each MC run into five “time”
first-order phase transition, based on the evidence that vantervals, and calculate an average pressure value for each
der Waals loops exig—4,6, is not sound. Further results one of the five intervals. Twice the values of the standard
for larger systems would help to establish how the:  deviations thus obtained from each such set are exhibited in
limit of the surface tension behaves. Fig. 1 as error bars.

It is perhaps worth stating explicitly that whereas phase There are two kinds of error bars shown in Fig. 5. We first
coexistence and nonvanishing surface tension that are assgiscuss the ones that follow from MC runs in tNe T en-
ciated with first-order transitions imply van der Waals loops,semble. We have obtained the probabilites(v) from in-
their appearance depends on boundary conditions when codependent MC runs for various valuesmfAs discussed in
tinuous phase transitions are involved. Indeed, whereage text, the free-energf(v) is given by
Pr(m) for the two-dimensional Ising model at the critical
point is bimodal for periodic boundary conditions, it exhibits e Nf()/kT— pp(v)eNPv, (A1)
one single maximuntno van der Waals loops thgfor free
boundary conditiong16]. Analogously, no van der Waals Using six curves forf(v)/kT thus obtained, we exhibit
loops are obtained for systems of disks for hard crystallineN[ f(v)/kT+p,w] in Fig. 6, for various values op and
walls [13] for N<4096 or for systems of disks on spherical p_=7.865, for systems of 1024 disks. Slightly different val-
surfaceq19]. This provides support for the proposition that yes of LAg/kT are obtained from each one of those
melting of systems of hard disks in 2D unfolds through af(y)/k T+ p,v curves(see Fig. 8 from which the standard
continuous transition. deviation is obtained. It is shown as the error for 32 in

Note added in proofRecently we learned of A. Jaster's Fig. 5. Other error bars shown in Fig. 5 for the values of
work [Phys. Rev. E59, 2594 (1999] that supports a | Ag/kT, which follow from the NpT ensemble, are ob-
Halperin-Nelson scenario for melting in 2D. tained similarly.

J.J.A. and J.F.F. are grateful for partial financial support We next explain how we obtain the error bars for the data
from DGES of Spain, through Grant Nos. PB97-1080 andpoints forLAg/kT shown as® in Fig. 5. These errors fol-
PB95-0797, respectively. It is a pleasure to acknowledgdéow from the errors shown in Fig. 1 for values pfv) that
continued help with computer work from Dr. Pedro Maez ~ were obtained from simulations in tleanonicalensemble.

APPENDIX



PRE 59 van der WAALS LOOPS AND THE MELTING ... 2663

An explanation is called for because the error evaluation prowhich, upon substitution gb,, from Eq. (A3), becomes
cedure is not trivial: variations ip(v) lead to variations in

the Maxwell construction pressure and in the integration lim- S(AG/KT) = 1

its of Eq. (5). However, a bit of reflection shows that such (vp—va)
changes in the limits of integration give contributions to er-
rors inAg that are of second order i#p(v) [wheredp(v) is

the difference between an erroneous pressure and the correct
oneg]. Accordingly, we shall neglect variations in, ,v., and
v, (which are defined as in Fig.)1Thus, the first-order
change dp,, that is induced in the Maxwell construction
pressurep,, by errors inp(v), is given by

Up
(Uc_va)f op(v)dv—(vp—ve)

X fvcép(v)dv . (A5)

Va

Finally, we replace integrals by sums. Furthermore, we note
that all errors obtained fop(v) for different values ofv
follow from different MC runs and are, therefore, assumed to
be statistically independent. We thus arrive at the average
value of[ §(Ag)]3,

(Pmt 8Pm) (Vp—va) = f () +8p(v)]dv,  (A2)
va ([8Ag)HY*  Av

. . - . T ——(q+s), (A6)
which, by virtue of the definition op,, itself, leads to (vp—va)
1 vh where
5pm:mﬁa op(e)do. A9 |2
a=(ve—va)| X 8p(w)?| (A7)
Now, the first-order variatio@Ag, which follows from Eq. VeSvisvp
(5), is given by 1/2
s=(wp=ve)| X opw)?] (A8)

S(AGIKT) = 8py(ve—12) — fucép(v)dv, (A4)

andAv=v;,1—v;. This is the desired expression.
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