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van der Waals loops and the melting transition in two dimensions
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Evidence for the existence of van der Waals loops in pressurep versus volumev plots has for some time
supported the belief that melting in two dimensions~2D! is a first-order phase transition. We report rather
accurate equilibriump(v) curves for systems of hard disks obtained from long Monte Carlo simulations. These
curves, obtained in the constant volume ensemble, using periodic boundary conditions, exhibit well-defined
van der Waals loops. We illustrate their existence for finite systems that are known to undergo acontinuous
transition in the thermodynamic limit. To this end, we obtain magnetizationm versus applied field curves from
Monte Carlo simulations of the two-dimensional Ising model, in the constantm ensemble, at the critical point.
Whether van der Waals loops for disk systems behave in theL→` limit as they do for the two-dimensional
Ising model at the critical point cannot be ruled out. Thus, the often made claim that melting in 2D is a
first-order phase transition, based on the evidence that van der Waals loops exist, is not sound.
@S1063-651X~99!01603-7#

PACS number~s!: 64.60.Cn, 05.70.Fh, 64.70.Dv
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Unphysical looking ‘‘loops’’ in pressure versus volum
curves have been coming out of approximate calculations
nearly a century@1#. These so-called van der Waals loo
have also been showing up in computer simulations of m
ing for over three decades@2–7#. As Mayer and Wood
pointed out@8#, pressures that increase with volume, whi
would be ruled out by van Hove’s theorem formacroscopic
systems@9#, are indeed to be expected when simulating m
ing of finite systems. van der Waals loops that decrease
system sizes increase have been observed in simula
@5,7#. Their existence has almost invariably been taken
evidence of a first-order phase transition@2–4,6# ~though not
always@5#! and this has contributed much to the often he
belief that the solid-fluid phase transition in two dimensio
~2D! is first-order@10,11#.

The purpose of this paper is threefold:~1! to give ex-
amples of van der Waals loops that do sometimes show
for finite systems that undergocontinuousphase transitions
in the thermodynamic limit;~2! to point out that since thei
size ~defined below! is exactly equal to the free energy ba
rier for nucleation of the other phase, it follows that van d
Waals loops are to be taken as signs offirst-order transitions,
only if their size vanishes in the thermodynamic limit as t
inverse of the linear system size (L); ~3! to report accurate
data for van der Waals loops that we have obtained for t
dimensional systems of 256 and 1024 classical hard disk
the fixed volume ensemble, and to show that their size
pendence is in very good agreement with more exten
data that follow from simulations in the constant press
ensemble~also known as theNpT ensemble! @12,13# that
seem to point to a second-order transition, rather than
first-order one.

The pressurep(v) exerted by a system with a given fixe
volume per particlev is usually obtained from Monte Carl
~MC! or from molecular dynamics simulations carried out
PRE 591063-651X/99/59~3!/2659~5!/$15.00
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constant volume. In order to obtainp(v) one makes use o
expressions that are derived from the virial theorem@14#,
which in turn follows from the relation

p~v !52
] f ~v,T!

]v
, ~1!

whereT is the temperature andf is the Helmholtz free energy
per particle. We have performed long Monte Carlo simu
tions (1.23108 MC sweeps in each run, of which the firs
0.33108 sweeps are allowed for equilibration! in the canoni-
cal ensemble for systems of 256 and 1024 hard disks.
results obtained are shown in Fig. 1~as s and h for N
5256 and 1024, respectively!.

Throughout the rest of this paper, ‘‘volume’’v actually
stands for thearea of a two-dimensional system; it is give
in terms of the closest packing areav0 , and has, therefore
no units. The pressurep is actually a force per unit length
which we give in terms ofkT/v0 and has therefore no units

There is an alternative way to obtain the same funct
p(v) that illustrates how van der Waals loops come about
finite systems. Consider the probability densityPp(v) that a
system at a given pressurep have specific volumev.Pp(v)
can be obtained from Monte Carlo simulations carried ou
a given pressurep, in the NpT ensemble. Data forPp(v)
that have been obtained@13# for a system of 256 hard disk
in the solid and fluid phases are shown in Fig. 2~a!. Data for
Pp(v) exhibiting coexistence of both phases are shown
Fig. 2~b! @13#. The p(v) curve that ensues in thecanonical
ensemble~that is, 2] f /]v), can be obtained fromPp(v),
sincePp(v) and f (v) are related by

Pp~v !}expH 2NF f ~v !

kT
1pvG J , ~2!
2659 ©1999 The American Physical Society
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wherek is Boltzmann’s constant. Each data point (v,p) ex-
hibited in Fig. 3 as ah, has been obtained this way from a
independent MC run at pressurep in the NpT ensemble.

FIG. 1. Pressurep vs volumev data points from MC simula-
tions systems ofN disks. The ‘‘volume’’v stands for anarea; it is
given in terms of the closest packing areav0 . The pressurep is a
force per unit length, given in terms ofkT/v0 . Neitherv nor p have
therefore any units.s andh stand for results from simulations i
the constant volume ensemble forN5256 andN51024, respec-
tively. For details about the error bars shown, see the Appendixd

andj stand for the average of the valuesp(v), extracted from six
independent simulations performed at different values ofp making
use of Eqs.~1! and ~2!. For N5256 we have used the pressu
valuesp57.55, 7.60, 7.62, 7.65, 7.67, 7.69, and forN51024 the
valuesp57.84, 7.85, 7.86, 7.865, 7.87, 7.88. Errors ford andj

are approximately equal to the size of the shown symbols. All d
points follow from runs of approximately 108 MC sweeps, after
equilibrating the system for 33107 MC sweeps.

FIG. 2. ~a! Frequency of occurrencePp(v) for specific volume
v for a system ofN5256 for p57.83 ~solid line! and for p
57.40 ~dashed line!. The units forv andp are given in the caption
for Fig. 1. ~b! Same as for~a! but for p57.64. These curves follow
from runs of over 23108 MC sweeps. Lines shown go throug
datapoints obtained, one for eachDv51023 bin. Volume values
where]@ f (v)/kT1pv#/]v50 are marked with arrows.
Note that any two volumes, such asva andvb in Fig. 3, that
fulfill p(va)5p(vb) are most probable volumes~see Fig. 2!
whenp, instead ofv, is fixed. On the other hand,vc , which
is the portion of the loop where]p/]v.0 and satisfies
p(vc)5p(va)5p(vb), is the least probable volume.

Alternatively, f (v) may, of course, be extracted from~at
least in principle! Pp(v) obtained from a single simulation a
an arbitrary constantp, using Eq.~2!. We have obtained the
set of data points shown in Figs. 1 and 3 forN5256 asd as
follows: Pp(v) is obtained at the discrete volum
values vn51.241nDv, where Dv50.0025, and n
50,1,2, . . . ,40.Pp(vn) follows from recorded histograms o
the number of timesv falls within vn2Dv/2 and vn
1Dv/2 in a given MC run, at a given value ofp. We have
obtainedPp(vn) for six values ofp from six independent
MC runs in theNpT ensemble. Making use of Eq.~2! and
the finite difference version of Eq.~1!, six p(vn) curves fol-
low. Data points for their average values at each value ofvn
are exhibited asd in Figs. 1 and 3. Corresponding standa
deviations give error bars of approximately the same size
the shown symbols. The same procedure has been use
obtain the data points exhibited in Fig. 1 forN51024 asj.
The good agreement between independent sets of the
points in Figs. 1 and 3 gives an indication of the accuracy
our equilibrium results.

For comparison, we also plot in Fig. 3p versus the mean
volume^v& that is obtained in theNpT ensemble for a sys
tem of 256 disks~shown asL). No van der Waals loops
obtain. This is because, in theNpT ensemble,]^v&/]p5
2N^(v2^v&)2&, which is clearly negative.

We next give an example that underscores the fact
while van der Waals loops follow for finite systems fro

ta

FIG. 3. Data points forp vs volume for systems ofN5256
disks.L stand for data points (^v&,p) obtained from simulations
using theNpT ensemble. The units forv and p are given in the
caption for Fig. 1.d are for averages over pressure valuesp57.55,
7.60, 7.62, 7.65, 7.67, 7.69 of the numerically obtained deriva
2] f (v)/]v, using f (v) obtained from the frequency of occurrenc
Pp(v) for each one of the six values ofp. Error bars are smaller
than the shown symbols.h are for points (p0 ,v) fulfilling the
relation ]@ f (v)/kT1p0v#/]v50 where f (v)/kT1p0v follows
from ln@Pp(v)# for p5p0 . For example, forp57.64~marked with a
dashed line in the figure! we find three different solutions
(va ,vc ,vb) @marked with arrows as in Fig. 2~b!#.
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first-order phase transitions, the converse isnot true. Con-
sider the Ising model in 2D. The applied fieldh versus mag-
netizationm is shown in Fig. 4 for Ising systems of 64 25
and 1024 spins, for periodic boundary conditions, at the c
cal temperatureT5Tc . These curves are unusual becau
we obtained them from MC simulations in an constantm
ensemble, rather than in the more often used ensemb
which h is fixed. In our simulations, we keepm constant
using the Kawasaki algorithm@15#. In it, one spin is flipped
up while another spin is flipped down at each MC step. T
canonical andNpT ensembles, discussed above, corresp
to the constantm and constanth ensembles, respectively.

We arrive at theh(m) values for the constant magnetiz
tion ensemble given in Fig. 4 as follows. Consider firs
simulation performed at constanth, in which spins are
flipped, and the total magnetizationM ~given by Nm) is
consequently not conserved. Letw(m12/N←m) be the con-
ditional probability that a system known to have anM value
make the transitionM12←M when no external field is ap
plied. SincePh(m)}exp@2Nf(m)/kT# for h50, we can write
the detailed balance condition,

w~m12/N←m!

w~m←m12/N!
5

e2N f~m12/N!/kT

e2N f~m!/kT . ~3!

Let the HamiltonianH becomeH2hM when fieldh is ap-
plied. Now,h plays no role in a calculation in the constantM
ensemble, but anh(m) can be obtained for the given valuem
from the relationh5] f (m)/]m. Taking logarithms of both
sides of the above equation givesf (m12/N)2 f (m) in terms
of the transition rates. The approximation

FIG. 4. Magnetic fieldh vs magnetizationm for the two-
dimensional Ising systems ofL3L spins at the critical temperature
for L58, 16, and 32. Continuous lines stand for data that follo
from probability Ph(m) curves, obtained from simulations in th
constanth ensemble forh50. The umbrella method was used
obtainPh(m), covering the whole range of21<m<1 values with
16 ‘‘umbrellas.’’ Each one of the three continuous lines sho
follows from 16 MC runs of 108 sweeps over the entire system f
N>12 and 53106 sweeps forL58.j,s, and L stand for L
58, 16, and 32, respectively, obtained in the conserved magne
tion m ensemble~with the Kawasaki algorithm!. Every point shown
follows from a MC run of 53106 sweeps forL58, and 108 sweeps
for N>12.
i-
e

in

e
d

f ~m12/N!2 f ~m!5~2/N!$] f @m1~1/N!/]m#%

gives

h@m1~1/N!#5~N/2!@ f ~m12/N!2 f ~m!#.

We thus arrive at

h~m!52
kT

2
lnFw~m11/N←m21/N!

w~m21/N←m11/N!G , ~4!

after shifting m→m21 for symmetry’s sake. In order to
obtain the transition rates, we proceed as follows. First n
that the probability for an up-spin flip from a given sp
configuration is proportional to either 1 or exp(2DE/kT), de-
pending on whether the corresponding energy changeDE is
either negative or positive, respectively. Accordingly, af
each MC sweep, having applied Kawasaki’s rule through
the entire system, we assign to each spin down either
number 1 or the number exp(2DE/kT), if flipping it up
would lower its energy or raise it byDE, respectively.~No
spin is actually flipped.! The sum of such numbers@1 and
exp(2DE/kT)# over all down spins in the system averag
over an MC run is our unnormalized estimate ofw(m
11/N←m21/N).

Alternatively, the same curves forh(m) may be obtained
from simulations in whichh is fixed, by applying the relation
h5] f (m)/]m to probability curvesPh(m) that follow from
such simulations. Results obtained in this fashion, from b
the constantm and the constanth ensembles, are exhibited i
Fig. 4.

We have also obtainedh(m) curves~not shown! for T
,Tc for the two-dimensional Ising model. However, loo
sizes forT,Tc and for T5Tc vary rather differently with
system size. By loop size, we mean the free-energyDg
5*h(m)dm over the domain of integration defined bym
,0 andh.0. Data points forLDg/kT are shown in Fig. 5
for T/Tc50.9, 0.95, and 1. Data points for the Gibbs fre
energy

Dg/kT5E
va

vc
@p~va!2p~v !#dv ~5!

~the shaded area in Fig. 3! are also shown in Fig. 5 for disk
systems of various sizes. In order to makeDg unique, we
chooseva such thatp(va) is the Maxwell construction pres
surepm @17#, that is,*va

vb@p(v)2pm#dv50. From data points

shown in Figs. 1 and 3, we obtain, making use of Eq.~3!, the
two data points shown in Fig. 5 asd for systems ofL3L
spins forL516 andL532. Data from previous simulation
in the NpT ensemble are also shown~ass) for L516, 20,
24, and 32@13#. The error bars shown in Fig. 5 follow from
the procedure described in the Appendix.

As Lee and Kosterlitz have explained in some detail@18#,
the macroscopic limitLDg ~a measure of the surface ten
sion! does not vanish for first-order phase transitions. T
follows from the following simple argument. As may be se
from Eq. ~5! and comparison of Figs. 2 and 3,LdDg ~the
system’s dimensiond is 2 in this case! is the free-energy
barrier that is surmounted by the system when a fluctua
takes it over the top, atvc , starting from the~locally! most
probable volumeva . We may, therefore, think ofLdDg as

s

a-
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the free energy of the wall that arises between two coexis
phases when one of them is nucleated from the other on
order to make a transition from one phase to the other o
Since the wall thickness is finite for first-order transitions
follows then thatLdDg;Ld21, which is the desired result.

Inspection of Fig. 5 shows that the vanishing ofLDg in
the L→` limit, as for the two-dimensional Ising model a
the critical point, can clearlynot be ruled out for disk sys-
tems. Thus, the often made claim that melting in 2D is
first-order phase transition, based on the evidence that
der Waals loops exist@2–4,6#, is not sound. Further result
for larger systems would help to establish how theL→`
limit of the surface tension behaves.

It is perhaps worth stating explicitly that whereas pha
coexistence and nonvanishing surface tension that are a
ciated with first-order transitions imply van der Waals loop
their appearance depends on boundary conditions when
tinuous phase transitions are involved. Indeed, wher
Ph(m) for the two-dimensional Ising model at the critic
point is bimodal for periodic boundary conditions, it exhib
one single maximum~no van der Waals loops then! for free
boundary conditions@16#. Analogously, no van der Waal
loops are obtained for systems of disks for hard crystal
walls @13# for N<4096 or for systems of disks on spheric
surfaces@19#. This provides support for the proposition th
melting of systems of hard disks in 2D unfolds through
continuous transition.

Note added in proof. Recently we learned of A. Jaster
work @Phys. Rev. E59, 2594 ~1999!# that supports a
Halperin-Nelson scenario for melting in 2D.
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FIG. 5. Data points forLDg/kT for a system ofL3L disks.d
ands stand for data obtained from systems ofL3L hard disks in
the constant volume andNpT ensembles, respectively.L, h, and
1 stand for the 2D Ising model at temperaturesT/Tc50.9, 0.95,
and 1, respectively. Lines are only guides to the eye. Error bars
data points shown ass are approximately given by the size of th
circles, except that the error is (60.0006) approximately four times
smaller forL532. For a detailed account about how these errors
well as the error bars shown for thed data points, were obtained
see the Appendix.
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APPENDIX

We specify here how we obtain the error bars shown
Figs. 1 and 5. The error bars shown in Fig. 1 for data t
follows from MC runs in the canonical ensemble are o
tained as follows. We divide each MC run into five ‘‘time
intervals, and calculate an average pressure value for e
one of the five intervals. Twice the values of the stand
deviations thus obtained from each such set are exhibite
Fig. 1 as error bars.

There are two kinds of error bars shown in Fig. 5. We fi
discuss the ones that follow from MC runs in theNpT en-
semble. We have obtained the probabilitiesPp(v) from in-
dependent MC runs for various values ofp. As discussed in
the text, the free-energyf (v) is given by

e2N f~v !/kT5Pp~v !eNpv. ~A1!

Using six curves forf (v)/kT thus obtained, we exhibi
N@ f (v)/kT1pmv# in Fig. 6, for various values ofp and
pm57.865, for systems of 1024 disks. Slightly different va
ues of LDg/kT are obtained from each one of thos
f (v)/kT1pmv curves~see Fig. 6!, from which the standard
deviation is obtained. It is shown as the error forL532 in
Fig. 5. Other error bars shown in Fig. 5 for the values
LDg/kT, which follow from the NpT ensemble, are ob
tained similarly.

We next explain how we obtain the error bars for the d
points forLDg/kT shown asd in Fig. 5. These errors fol-
low from the errors shown in Fig. 1 for values ofp(v) that
were obtained from simulations in thecanonicalensemble.

or

s

FIG. 6. QuantityN@ f (v)/kT1pmv# vs v, up to a constant, ob-
tained from MC simulations of systems of 1024 disks for each
the values ofp shown; pm57.865. Each one of the six curve
shown follows from a MC run of at least 23108 MC sweeps over
the whole system. Ideally, all curves should be equal. We define
free-energy barrier,DG as the local maxima ofN@ f (v)/kT
1pmv# minus the average value of its two minimum values. A
values ofDG/kT thus obtained are shown in the figure. We obta
the average valueDG/kT50.62. The corresponding standard d
viation is 0.02.
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An explanation is called for because the error evaluation p
cedure is not trivial: variations inp(v) lead to variations in
the Maxwell construction pressure and in the integration l
its of Eq. ~5!. However, a bit of reflection shows that suc
changes in the limits of integration give contributions to
rors inDg that are of second order indp(v) @wheredp(v) is
the difference between an erroneous pressure and the co
one#. Accordingly, we shall neglect variations inva ,vc , and
vb ~which are defined as in Fig. 1!. Thus, the first-order
changedpm that is induced in the Maxwell constructio
pressurepm by errors inp(v), is given by

~pm1dpm!~vb2va!5E
va

vb
@p~v !1dp~v !#dv, ~A2!

which, by virtue of the definition ofpm itself, leads to

dpm5
1

~vb2va!
E

va

vb
dp~v !dv. ~A3!

Now, the first-order variationdDg, which follows from Eq.
~5!, is given by

d~Dg/kT!5dpm~vc2va!2E
va

vc
dp~v !dv, ~A4!
at
en

. B

nc
o-

-

-

ect

which, upon substitution ofpm from Eq. ~A3!, becomes

d~Dg/kT!5
1

~vb2va!F ~vc2va!E
vc

vb
dp~v !dv2~vb2vc!

3E
va

vc
dp~v !dvG . ~A5!

Finally, we replace integrals by sums. Furthermore, we n
that all errors obtained forp(v) for different values ofv
follow from different MC runs and are, therefore, assumed
be statistically independent. We thus arrive at the aver
value of @d(Dg)#2,

^@d~Dg!#2&1/2

kT
5

Dv
~vb2va!

~q1s!, ~A6!

where

q5~vc2va!F (
vc,v i,vb

dp~v i !
2G1/2

, ~A7!

s5~vb2vc!F (
va,v i,vc

dp~v i !
2G1/2

, ~A8!

andDv5v i 112v i . This is the desired expression.
ev.
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